File:Poincare halfplane heptagonal hb.svg
From Wikimedia Commons, the free media repository
(Redirected from File:Poincare halfplane eptagonal hb.svg)
Size of this PNG preview of this SVG file: 800 × 400 pixels. Other resolutions: 320 × 160 pixels | 640 × 320 pixels | 1,024 × 512 pixels | 1,280 × 640 pixels | 2,560 × 1,280 pixels.
Original file (SVG file, nominally 800 × 400 pixels, file size: 173 KB)
File information
Structured data
Captions
Summary[edit]
DescriptionPoincare halfplane heptagonal hb.svg | Stellated Eptagonal honeycomb (tiling) of the Poincare Half-Plane Model |
Date | |
Source | Own work |
Author | Claudio Rocchini |
Permission (Reusing this file) |
CC-BY 3.0 |
Source Code[edit]
The complete and dirty C++ generating source code:
/* Poincare Half-plane model (C)2007 Claudio Rocchini, the SHQN man */ #include <stdio.h> #include <stdlib.h> #include <math.h> #include <assert.h> #include <vector> const double PI = 3.1415926535897932384626433832795; const double EPS = 1e-12; const double EPS2 = 1e-4; const int dimx = 800; const int dimy = 400; const int OX = dimx/2; const int OY = dimy; namespace hp { class point { public: double x,y; point(){} point( double nx, double ny ) : x(nx),y(ny) {} }; class line { protected: void at_param( double t, point & q ) const; double param( const point & q ) const; public: bool di; // direzione: diretta o rovesciata double ra; // raggio: 0 = linea verticale double cx; // centro vertice void from_points( const point & p, const point & q ); void from_point_angle( const point & p, double a ); void at_dist( const point & p, double d, bool dir, point & q ) const; double angle( const point & p ) const; }; double dist( const point & p, const point & q ); void line::from_points( const point & p, const point & q ) { if( fabs(p.x-q.x)<EPS ) { ra = 0; cx = 0.5*(p.x+q.x); } else { cx = 0.5*(q.x*q.x+q.y*q.y-p.x*p.x-p.y*p.y)/(q.x-p.x); ra = sqrt( (p.x-cx)*(p.x-cx)+p.y*p.y ); } double ip = param(p); double iq = param(q); di = ip<iq; } void line::from_point_angle( const point & p, double a ){ if( fabs(a-PI/2)<EPS || fabs(a-PI*3/2)<EPS ) { ra = 0; cx = p.x; } else { double b = a+PI/2; double co = cos(b); double si = sin(b); ra = fabs(p.y/si); cx = -(p.y*co-p.x*si)/si; } di = cos(a)>=0; } void line::at_param( double t, point & q ) const { if(ra==0) { q.x = cx; q.y = t; } else { q.x = ra*cos(t) + cx; q.y = ra*sin(t); } } double line::param( const point & q ) const { if(ra==0) return q.y; else return atan2(q.y,q.x-cx); } void line::at_dist( const point & p, double d, bool dir, point & q ) const { if(ra==0) { double tmi,tma,tmm; if(dir!=di) { tmi = 0 + EPS; tma = param(p); for(;;) { tmm = (tmi+tma)/2; at_param(tmm,q); double ld = dist(p,q); if(ld>d) tmi = tmm; else tma = tmm; if(tma-tmi<EPS) break; } } else { tmi = param(p); tma = tmi*100; for(;;) { tmm = (tmi+tma)/2; at_param(tmm,q); double ld = dist(p,q); if(ld<d) tmi = tmm; else tma = tmm; if(tma-tmi<EPS) break; } } } else { double tmi,tma,tmm; if(dir!=di) { tmi = 0 + EPS; tma = param(p); for(;;) { tmm = (tmi+tma)/2; at_param(tmm,q); double ld = dist(p,q); if(ld>d) tmi = tmm; else tma = tmm; if(tma-tmi<EPS) break; } } else { tmi = param(p); tma = PI-EPS; for(;;) { tmm = (tmi+tma)/2; at_param(tmm,q); double ld = dist(p,q); if(ld<d) tmi = tmm; else tma = tmm; if(tma-tmi<EPS) break; } } } } double line::angle( const point & p ) const { double a = 0; if(ra==0) a = PI/2; else a = atan2(p.y,p.x-cx) - PI/2; if(di) a += PI; return a; } double dist( const point & p, const point & q ) { line l; l.from_points(p,q); if(l.ra!=0) { double A = l.cx - l.ra; double B = l.cx + l.ra; double PA = sqrt( (p.x-A)*(p.x-A)+p.y*p.y ); double PB = sqrt( (p.x-B)*(p.x-B)+p.y*p.y ); double QA = sqrt( (q.x-A)*(q.x-A)+q.y*q.y ); double QB = sqrt( (q.x-B)*(q.x-B)+q.y*q.y ); return fabs(log( (PA/PB) / (QA/QB) )); } else { double A = l.cx; double PA = sqrt( (p.x-A)*(p.x-A)+p.y*p.y ); double QA = sqrt( (q.x-A)*(q.x-A)+q.y*q.y ); return fabs(log( (PA/QA) )); } } void draw_point( FILE * fp, const point & p, double R ) { fprintf(fp,"<circle cx=\"%5.1lf\" cy=\"%5.1lf\" r=\"%g\"/>\n",p.x+OX,OY-p.y,R); } void draw_line( FILE * fp, const line & l ) { if(l.ra==0) fprintf(fp,"<line x1=\"%5.1lf\" y1=\"0\" x2=\"%5.1lf\" y2=\"%5.1lf\"/>" ,OX+l.cx ,OX+l.cx ,double(dimy) ); else fprintf(fp,"<path d=\"M %5.1lf,%5.1lf A %g,%g 0 0,1 %5.1lf,%5.1lf\"/>\n" ,OX+l.cx-l.ra,double(dimy),l.ra,l.ra,OX+l.cx+l.ra,double(dimy) ); } void draw_arc( FILE * fp, const line & l, const point & p, const point & q ) { if(l.ra==0) fprintf(fp,"<line x1=\"%5.1lf\" y1=\"%5.1lf\" x2=\"%5.1lf\" y2=\"%5.1lf\"/>\n" ,OX+l.cx,OY-p.y,OX+l.cx,OY-q.y); else fprintf(fp,"<path d=\"M %5.1lf,%5.1lf A %g,%g 0 0,%d %5.1lf,%5.1lf\"/>\n" ,OX+p.x,OY-p.y,l.ra,l.ra,p.x<q.x ? 1 : 0,OX+q.x,OY-q.y); } double e_dist( const point & p1, const point & p2 ){ const double dx = p1.x - p2.x; const double dy = p1.y - p2.y; return sqrt(dx*dx+dy*dy); } } // End namespace hp class edge { public: int i[2]; edge(){} edge( int i0, int i1 ) { i[0]=i0; i[1]=i1; } inline operator== ( const edge & e ) const { return (i[0]==e.i[0] && i[1]==e.i[1]) || (i[0]==e.i[1] && i[1]==e.i[0]) ; } }; int main(){ const double R = 2; const int L = 7; const double qangle = 2*PI/3; // Angolo di tassellazione std::vector<hp::point> nodes; std::vector< edge > edges; std::vector< edge > edges2; int i; // Ricerca lato hp::point q[L]; hp::point c(dimx/2-502.5,dimy/2); const double sangle = 0; double lato = 0; double milato = 1e-4; double malato = 5; const int D = 2; for(;;) { lato = (milato+malato)/2; q[0] = c; hp::line k; k.from_point_angle(c,sangle); k.at_dist(c,lato,false,q[1]); for(i=1;i<L-1;++i) { hp::line l; l.from_points(q[i-1],q[i]); double a0 = l.angle(q[i]); a0 -= PI-qangle; hp::line l1; l1.from_point_angle(q[i],a0); l1.at_dist(q[i],lato,false,q[i+1]); } double d = hp::dist(q[0],q[L-1]); if(d<lato) milato = lato; else malato = lato; if( malato-milato<EPS) { lato = (milato+malato)/2; break; } } std::vector< int > openedges; q[0] = c; hp::line k; k.from_point_angle(c,sangle); k.at_dist(c,lato,false,q[1]); for(i=1;i<L-1;++i) { hp::line l; l.from_points(q[i-1],q[i]); double a0 = l.angle(q[i]); a0 -= PI-qangle; hp::line l1; l1.from_point_angle(q[i],a0); l1.at_dist(q[i],lato,false,q[i+1]); } for(i=0;i<L;++i) { nodes.push_back(q[i]); edges.push_back( edge(i,(i+1)%L) ); openedges.push_back( edges.size()-1 ); } for(i=0;i<L;++i) edges2.push_back( edge(i,(i+D)%L) ); // Ciclo di espansione int nn = 0; int maxn = 3000; while( !openedges.empty() ) { int e = openedges.front(); //openedges.erase( openedges.begin() ); int ip1 = edges[e].i[0]; int ip0 = edges[e].i[1]; hp::point p0 = nodes[ ip0 ]; hp::point p1 = nodes[ ip1 ]; int eee[L]; for(i=0;i<L;++i) { eee[i] = ip0; hp::line l; l.from_points(p0,p1); double a0 = l.angle(p1); a0 -= PI-qangle; hp::line l1; l1.from_point_angle(p1,a0); hp::point p2; l1.at_dist(p1,lato,false,p2); int ip2 = -1; for(ip2=0;ip2<nodes.size();++ip2) if( hp::e_dist(nodes[ip2],p2)<EPS2 ) break; if(ip2==nodes.size()) nodes.push_back(p2); edge e(ip1,ip2); std::vector< int >::iterator jj; for(jj=openedges.begin();jj!=openedges.end();++jj) if(edges[*jj]==e) break; if(jj==openedges.end()) { openedges.push_back(edges.size()); edges.push_back(e); } else openedges.erase(jj); p0 = p1; ip0 = ip1; p1 = p2; ip1 = ip2; } for(i=0;i<L;++i) edges2.push_back( edge(eee[i],eee[(i+D)%L]) ); if(++nn>=maxn) break; } FILE * fp = fopen("hp.svg","w"); fprintf(fp, "<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?>\n" "<!-- Created with svg-rocco-library v1.0 -->\n" "<svg\n" "xmlns:svg=\"http://www.w3.org/2000/svg\"\n" "xmlns=\"http://www.w3.org/2000/svg\"\n" "xmlns:xlink=\"http://www.w3.org/1999/xlink\"\n" "version=\"1.0\"\n" "width=\"%d\"\n" "height=\"%d\"\n" "id=\"rocco\"\n" ">\n" ,dimx,dimy ); const double MINDIST = 1; const double MINDIST2 = 4; fprintf(fp,"<g id=\"arc_s\" style=\"fill:none;stroke:#0000E0;stroke-width:1;stroke-opacity:0.95;stroke-dasharray:none\">\n"); std::vector< edge >::iterator jj; for(jj=edges2.begin();jj!=edges2.end();++jj){ if( (nodes[ jj->i[0]].x<-dimx/2 || nodes[ jj->i[0]].x>dimx/2 || nodes[ jj->i[0]].y<0 || nodes[ jj->i[0]].y>dimy ) && (nodes[ jj->i[1]].x<-dimx/2 || nodes[ jj->i[1]].x>dimx/2 || nodes[ jj->i[1]].y<0 || nodes[ jj->i[1]].y>dimy ) ) continue; double dd = hp::e_dist( nodes[ jj->i[0]], nodes[ jj->i[1]] ); if(dd<MINDIST2) continue; hp::line l; l.from_points( nodes[ jj->i[0]], nodes[ jj->i[1]] ); hp::draw_arc(fp,l,nodes[ jj->i[0]], nodes[ jj->i[1]] ); } fprintf(fp,"</g>\n"); fprintf(fp,"<g id=\"arc_s\" style=\"fill:none;stroke:#000000;stroke-width:2;stroke-opacity:0.95;stroke-dasharray:none\">\n"); for(jj=edges.begin();jj!=edges.end();++jj){ if( (nodes[ jj->i[0]].x<-dimx/2 || nodes[ jj->i[0]].x>dimx/2 || nodes[ jj->i[0]].y<0 || nodes[ jj->i[0]].y>dimy ) && (nodes[ jj->i[1]].x<-dimx/2 || nodes[ jj->i[1]].x>dimx/2 || nodes[ jj->i[1]].y<0 || nodes[ jj->i[1]].y>dimy ) ) continue; double dd = hp::e_dist( nodes[ jj->i[0]], nodes[ jj->i[1]] ); if(dd<MINDIST) continue; hp::line l;l.from_points( nodes[ jj->i[0]], nodes[ jj->i[1]] ); hp::draw_arc(fp,l,nodes[ jj->i[0]], nodes[ jj->i[1]] ); } fprintf(fp,"</g>\n"); fprintf(fp,"</svg>\n"); fclose(fp); return 0; }
Licensing[edit]
I, the copyright holder of this work, hereby publish it under the following licenses:
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue |
This file is licensed under the Creative Commons Attribution 3.0 Unported license.
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
You may select the license of your choice.
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 09:27, 15 November 2007 | 800 × 400 (173 KB) | Rocchini (talk | contribs) | {{Information |Description=Stellated Eptagonal Tiling (Honeycomb) of Poincare Half-plane model |Source=self-made |Date=2007-11-15 |Author= Claudio Rocchini |Permission=CC-BY 3.0 }} | |
09:23, 15 November 2007 | 800 × 400 (726 KB) | Rocchini (talk | contribs) | {{Information |Description=Stellated Eptagonal honeycomb (tiling) of the Poincare Half-Plane Model |Source=self-made |Date=2007-11-15 |Author= Claudio Rocchini |Permission=CC-BY 3.0 }} |
You cannot overwrite this file.
File usage on Commons
The following page uses this file:
- File:Poincare halfplane eptagonal hb.svg (file redirect)
File usage on other wikis
The following other wikis use this file:
- Usage on de.wikipedia.org
- Usage on en.wikipedia.org
- Usage on it.wikipedia.org
- Usage on ja.wikipedia.org
- Usage on ru.wikipedia.org
- Usage on uk.wikipedia.org
- Usage on zh.wikipedia.org